skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Broadbent, Eben N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lianas, woody vines acting as structural parasites of trees, have profound effects on the composition and structure of tropical forests, impacting tree growth, mortality, and forest succession. Remote sensing could offer a powerful tool for quantifying the scale of liana infestation, provided the availability of robust detection methods. We analyze the consistency and global geographic specificity of spectral signals—reflectance across wavelengths—from liana‐infested tree crowns and forest stands, examining the underlying mechanisms of these signals. We compiled a uniquely comprehensive database, including leaf reflectance spectra from 5424 leaves, fine‐scale airborne reflectance data from 999 liana‐infested canopies, and coarse‐scale satellite reflectance data covering 775 ha of liana‐infested forest stands. To unravel the mechanisms of the liana spectral signal, we applied mechanistic radiative transfer models across scales, establishing a synthesis of the relative importance of different mechanisms, which we corroborate with field data on liana leaf chemistry and canopy structure. We find a consistent liana spectral signal at canopy and stand scales across globally distributed sites. This signature mainly arises at the canopy level due to direct effects of more horizontal leaf angles, resulting in a larger projected leaf area, and indirect effects from increased light scattering in the near and short‐wave infrared regions, linked to lianas' less costly leaf construction compared with trees on average. The existence of a consistent global spectral signal for lianas suggests that large‐scale quantification of liana infestation is feasible. However, because the traits responsible for the liana canopy‐reflectance signal are not exclusive to lianas, accurate large‐scale detection requires rigorously validated remote sensing methods. Our models highlight challenges in automated detection, such as potential misidentification due to leaf phenology, tree life history, topography, and climate, especially where the scale of liana infestation is less than a single remote sensing pixel. The observed cross‐site patterns also prompt ecological questions about lianas' adaptive similarities in optical traits across environments, indicating possible convergent evolution due to shared constraints on leaf biochemical and structural traits. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Constructed landscapes are composed of diverse communities, representing different social strata and perspectives of a place. In turn, the risks associated with inhabiting unpredictable environments are disproportionately felt across urban and rural landscapes. The mitigation and management of risks often fall on farming and smallholder communities, influencing decentralized strategies. These themes are explored in an archaeological context surrounding the confluence of the Upper Usumacinta and Lacantún Rivers in the neotropical Maya lowlands of Chiapas, Mexico. LiDAR data collected recently with the GatorEye unoccupied aerial vehicle (UAV) and NASA’s GLiHT system have aided in the mapping of the archaeological urban centre of Benemérito de las Américas, Primera Sección and the surrounding landscape. These data have revealed coupled settlement with land management, in the form of wetland fields, reservoirs, and riverways, emphasizing the interconnectivity of household practice and land use in the region. 
    more » « less
  3. Airborne laser scanning has proven useful for rapid and extensive documentation of historic cultural landscapes after years of applications mapping natural landscapes and the built environment. The recent integration of unoccupied aerial vehicles (UAVs) with LiDAR systems is potentially transformative and offers complementary data for mapping targeted areas with high precision and systematic study of coupled natural and human systems. We report the results of data capture, analysis, and processing of UAV LiDAR data collected in the Maya Lowlands of Chiapas, Mexico in 2019 for a comparative landscape study. Six areas of archaeological settlement and long-term land-use reflecting a diversity of environments, land cover, and archaeological features were studied. These missions were characterized by areas that were variably forested, rugged, or flat, and included pre-Hispanic settlements and agrarian landscapes. Our study confirms that UAV LiDAR systems have great potential for broader application in high-precision archaeological mapping applications. We also conclude that these studies offer an important opportunity for multi-disciplinary collaboration. UAV LiDAR offers high-precision information that is not only useful for mapping archaeological features, but also provides critical information about long-term land use and landscape change in the context of archaeological resources. 
    more » « less
  4. Unraveling the mechanisms underlying the maintenance of species diversity is a central pursuit in ecology. It has been hypothesized that ectomycorrhizal (EcM) in contrast to arbuscular mycorrhizal fungi can reduce tree species diversity in local communities, which remains to be tested at the global scale. To address this gap, we analyzed global forest inventory data and revealed that the relationship between tree species richness and EcM tree proportion varied along environmental gradients. Specifically, the relationship is more negative at low latitudes and in moist conditions but is unimodal at high latitudes and in arid conditions. The negative association of EcM tree proportion on species diversity at low latitudes and in humid conditions is likely due to more negative plant-soil microbial interactions in these regions. These findings extend our knowledge on the mechanisms shaping global patterns in plant species diversity from a belowground view. 
    more » « less
    Free, publicly-accessible full text available June 13, 2026
  5. En este trabajo describimos los resultados del uso de tecnología lidar en drones en el área Maya entre junio del 2017 y 2018. Nuestro objetivo es desarrollar métodos, procedimientos y estándares apropiados para el uso de lidar en drones en el mapeo de asentamientos antiguos. Se sobrevolaron tres sitios dentro de la región superior del río Usumacinta: Piedras Negras en Guatemala, Budsilha y El Infiernito en México. Estos sitios representan una gama de contextos naturales y culturales ideales para evaluar las aplicaciones de la tecnología lidar en el campo. Los modelos de elevación digital y de superficie digital muestran la utilidad del uso de drones en el área Maya. Esta tecnología es apropiada y rentable para el trabajo de campo, pero aún requiere de una detallada planificación y evaluación de las muestras. Futuros estudios evaluarán métodos y técnicas para filtrar y procesar estos datos. 
    more » « less
  6. Abstract The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks. 
    more » « less
  7. Abstract AimEcological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species? LocationGlobal. Time period1990–2017. Major taxa studiedTrees. MethodsWe used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated. ResultsCommunity dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large‐scale land degradation. Main conclusionsBy linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest that also widespread species should be considered in large‐scale management and conservation practices. 
    more » « less
  8. Abstract Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5–7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions. 
    more » « less